
Operating Systems 2016/17
Tutorial-Assignment 7

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Question 7.1: Race Conditions
a. Explain the term race condition with this scenario: Two people try to access a bank

account simultaneously. One person tries to deposit 100 Euros, while another wants
to withdraw 50 Euros. These actions trigger two update operations in a central bank
system. Both operations run in “parallel” on the same computer, each represented by a
single thread executing the following code:

current = get balance () ;
current += delta ;
set balance (current) ;

where delta is either 100 or −50 in our example.

Solution:
A race condition is a situation where the correctness of a number of operations depends on
the order in which the operations are executed. Let us assume that the initial balance is
1000 Euros. It might happen that the first thread copies the current balance (i.e., 1000) into
the variable current and is then preempted by the scheduler. The second thread starts,
also copies the current balance (1000), withdraws 50 Euros, and updates the balance to
950 Euros. When the first thread resumes, it will add the deposit of 100 Euros to current

and write the result back, so that the final balance will be 1100 Euros, but should actually
be only 1050 Euros.

The problem here is that reading the old balance, updating it, and writing it back is not
atomic. If it was, either thread 1 or thread 2 would finish its update before the other is
allowed to modify the balance.

b. Determine the lower and upper bounds of the final value of the shared variable tally as
printed in the following program:

const int N = 50;
int t a l l y ;

void to ta l ()
{

for (int i = 0; i < N; ++ i)
t a l l y += 1;

}

int main ()
{

t a l l y = 0;

#pragma omp para l le l for
for (int i = 0; i < 2; ++ i)

to ta l () ;

pr int f (”%d\n” , t a l l y) ;
return 0;

}

Assume that threads can execute at any relative speed and that a value can only be
incremented after it has been loaded into a register by a separate machine instruction.

1

Solution:
On casual inspection, it appears that tally will fall into the range of 50 ≤ tally ≤ 100 since
between 0 and 50 increments could go unrecorded due to lack of mutual exclusion. The
basic argument contends that running these two threads concurrently should not derive
results lower than the results produced by executing these threads sequentially.

Consider the following interleaved sequence of the load, increment, and store operations:

(a) Thread A loads the value of tally and increments it, but then loses the processor (it
has already incremented its register to 1, but has not yet stored this value back into
tally).

(b) Thread B loads the value of tally (still zero) and performs 49 complete increment
operations, losing the processor just after it has stored the value 49 into the shared
variable tally.

(c) Thread A regains control long enough to perform its first store operation (replacing the
previous value of 49 in tally with 1) but after this it is immediately forced to relinquish
the processor again.

(d) Thread B resumes long enough to load 1 (the current value of tally) into its register,
but then it too is forced to give up the processor (note that this was B’s final load
operation).

(e) Thread A is rescheduled, but this time it is not interrupted and runs to completion,
performing its remaining 49 load, increment, and store operations, which results in
setting the value of tally to 50.

(f) Thread B is rescheduled with only one increment and store operation to perform be-
fore it terminates. It increments its register value to 2 and stores this value as the
final value of the shared variable.

Some thought will reveal that a value of lower than 2 cannot occur. Thus the proper and a
bit astonishing range of values for the shared variable tally is [2, 100].

Load tally

Write tally

0 0 49

Thread 1

1 1 1 50 2

Thread 2

Load tally

Write tally

0 0 50 1 1 50

Figure 1: Execution timeline for the two threads in the worst case. The (wrong) intuitive
solution at the top, the correct solution at the bottom.

c. Suppose that an arbitrary number t > 2 of parallel threads are performing the above
procedure total. What (if any) influence does the value of t have on the range of the
final values of tally?

Solution:
The range of final values of the shared variable tally is [2, 50 · t], since it is possible for
all other threads to be initially scheduled and run to completion in step (e) before thread B
would finally destroy their work by finishing last.

2

0 0 49

Thread 1

1 1 1 50 2

Thread 2

Load tally

Write tally

A B C D ...Additional Threads

Figure 2: Execution timeline for t > 2 threads in the worst case.

d. Now suppose userlevel threads (i.e., the many-to-one model) were used. Would this
change make a difference to the output?

Solution:
With (cooperatively scheduled) userlevel threads, no hardware parallelism is leveraged.
Hence, only one of the userlevel threads runs at any point in time. As long as the active
thread does not voluntarily yield between reading and writing tally, each thread will in-
crement the variable without being preempted, so that tally will have the correct value
when printed.

e. Finally consider a modified total routine:

void to ta l ()
{

for (int i = 0; i < N; ++ i)
{

t a l l y += 1;
sched yield () ;

}
}

What will be printed in the one-to-one model, when a voluntary yield is added?

Solution:
With the one-to-one model, sched yield only causes a plethora of additional context switches,
but does not guarantee that no thread is interrupted between reading and writing tally.
As a consequence, any value between 2 and 100 may be printed.

Question 7.2: Critical Sections

a. Explain the terms critical section, entry section, exit section, and remainder section.

Solution:
A critical section is a code region in which a thread accesses some common data such as
a shared variable. As soon as one thread is executing inside a critical section, no other
thread is allowed to execute the same critical section.

A critical section is enclosed by an entry section and an exit section. In the entry section,
a thread must request permission to enter the critical section. In the exit section, it may
signal completion of the critical section, so to allow other threads to enter.

The remaining code after the exit section is called remainder section.

3

b. Enumerate and explain the requirements for a valid synchronization solution.

Solution:

Exlusiveness: No two concurrent activities can enter a critical section (CS) that is pro-
tected by a synchronization primitive.

Progress: Threads in the remainder section do not prevent threads in front of the CS
(waiting at the synchronization primitive) from entering the CS.

Bounded Waiting: Bounded Waiting ensures that a thread waiting in front of a CS will
eventually have the chance to enter the CS, that is, it ensures some “fairness” among
threads that compete for the CS.

c. Recap the banking example from the previous question. How could the race condition
be avoided?

Solution:
Race conditions can be avoided if it is ensured that “critical” operations are performed
atomically. To ensure atomicity, a synchronization primitive can be used, for example a
lock, or a semaphore. A synchronization primitive ensures that at most one thread can be
inside a critical section. Using a synchronization primitive L, we could fix the code from
above:

lock (L) ;
current = get balance () ;
current += delta ;
set balance (current) ;
unlock (L) ;

Now, even if one thread is preempted while updating the balance, the other cannot enter
this critical code section, because it will have to wait (either actively or passively) at the
lock(L) instruction until the other thread performs the unlock(L) operation. Keep in mind
that we have just passed on the problem to the lock function!

Question 7.3: Synchronization Primitives

a. Distinguish the various types of synchronization objects and summarize their respective
operations’ semantics: spinlocks, counting semaphores, binary semaphores, and mutex
objects.

Solution:

Spinlock l: lock(l)/unlock(l)
Uses busy waiting and atomic instructions (such as test-and-set) to ensure mutual
exclusion. Wastes CPU time, thus only recommended for short critical sections. Ineffi-
cient on single-processor systems.

(Counting) Semaphore sem: wait(sem)/signal(sem)
Each call to wait decrements the counter of the semaphore. If the counter falls below
0, the thread/process executing wait is blocked and appended to the semaphore’s
queue. A call to signal increments the counter of the semaphore. If it is still less
or equal to zero, a thread/process is removed from the queue and unblocked. The
counter is not directly accessible for the users of a semaphore.

4

Counting semaphores can be used to implement bounded buffers (signaling and syn-
chronization) with the counter initially set to the number of items (and/or free slots) in
the buffer; they can also be used to implement mutual exclusion (see mutex).
No signals are lost, but wait(sem)/signal(sem) operations must be paired correctly.

Binary Semaphore sem: wait(sem)/signal(sem)
Mutex (Lock) m: lock(m)/unlock(m)

A counting semaphore whose counter can only take the values 0 or 1. Note that the
semaphore might additionally need to store whether its queue is empty.
Calls to signal(sem) wake up a thread from sem’s queue (if any) — multiple calls
to signal(sem) without calls to wait(sem) or threads already waiting in sem’s queue
cause signal losses.

Condition Variable cond: wait(cond)/signal(cond)
Always used in conjunction with a mutex. Allows a thread to acquire a lock, check for
a certain condition and go to sleep if the condition is not met. The lock is automatically
released, when the thread is blocked and reacquired, when the thread is unblocked.
Consider the implementation of the worker pool in assignment 4. The work queue
needs to be protected by a mutex, otherwise it can be corrupted by parallel access
from the producers and workers.
Without a condition variable, a producer would acquire the lock, submit work, release
the lock, and finally wake up a worker.
A worker on the other side, would acquire the lock and check the work queue for
new work. If no work is available it would 1) releases the lock (so new work can be
submitted), and 2) go to sleep (block). If the operations 1 and 2 are not performed
atomically (as with a condition variable), the producer could send the wakeup signal
inbetween the operations 1 and 2. Since the worker is still running, the wakeup has
no effect. However, the next step for the worker is to go to sleep (although the queue
contains work).

Question 7.4: Producer-Consumer Problem
a. Solve the producer-consumer problem for the following buffer using a single pthread

mutex and two semaphores:

#define BUFFER SIZE 10
int buffer [BUFFER SIZE] ;
int index = 0; // Current element in buffer

Solution:

pthread mutex t lock ;
sem t f i l l , empty ;

void i n i t i a l i z e ()
{

pthread mutex init (&lock , NULL) ;
sem init (& f i l l , 0 , 0) ; // I n i t i a l i z e to 0
sem init (&empty , 0 , BUFFER SIZE) ; // I n i t i a l i z e to buffer size

}

void∗ producer thread main (void∗ arg)
{

while (1) {
int item = produce () ; // Produce a new item

// Wait fo r empty s lo t and ” reserve ” i t atomically
sem wait(&empty) ;

5

// Only one thread may modify the buffer at a time
pthread mutex lock(&lock) ;
buffer [index++] = item ;
pthread mutex unlock(&lock) ;

// Signal consumer threads that an item is ready
sem post(& f i l l) ;

}
}

void∗ consumer thread main (void∗ arg)
{

while (1) {
// Wait fo r an item in the buffer and claim i t fo r th is consumer
sem wait(& f i l l) ;

// Only one thread may modify the buffer at a time
pthread mutex lock(&lock) ;
int item = buffer[−−index] ;
pthread mutex unlock(&lock) ;

// Signal producer threads that an buffer s l o t is empty again
sem post(&empty) ;

consume (item) ; // Do something useful with the item
}

}

6

